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1 Introduction

• Large scale modeling of Antarctica:
– 1km resolution on Antarctica -> 20 Million elements in 2d

– 400 million in 3d (20 vertical layers)

– Full stokes: 1.6 billion dofs. (4 per node)

– Cost is prohibitive.

• Constraints on bedrock friction and ice rheology:
– Paleo runs for large scale models are hard to converge to present time.

– Paleo runs usually do not account for full stress equilibrium (SIA).

– A mix of paleo run and inverse control methods at present time could be 
necessary (similar to GCM spin up). 
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2 Higher order inverse control methods.

• Cost function: 

• We augment J with the ice flow model desired, multiplied by 
adjoint vectors. The model equations depend on the order modeling 
desired: 

• Macayeal:
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• Pattyn:

• Second part of misfit is integrated on the volume instead of the 
surface. Macayeal is thickness integrated, Pattyn is 3d. Drag is a 
boundary condition for Pattyn, instead of a surface term for 
MacAyeal.
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• Stokes:

• Add vertical stress equilibrium + incompressibility equation. 
Observations misfit still integrated over surface layer. 
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• Misfit gradients with respect to drag coefficient:

(Paterson, 1994)

or

• Stokes:

• Pattyn and MacAyeal:
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• Thermal constraints:
– Ice rheology inverted for ice shelves (no bedrock friction).

– For ice sheet: inversion of drag and ice rheology is a severely

underconstrained optimization problem -> solution exhibits multiple

extrema.

We run steady-state thermal model at each iteration of the inverse

control method, so that thermally induced stresses are accounted for. 

Thermal model is equally computationally intensive.

12/14/2009
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3 Large scale modeing using 
Anisotropic Mesh Adaptation.

• If the solution u(x) is approximated by uh(x), with piecewise linear 
interpolation, a local approximation error can be defined over an 
element E to be :
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Generalized error estimate:

(Habashi 2000)

where :
– hE length of the element edge

– Cd constant that depends only on the space dimension (1.8 in 1d, 2.9 in 
2d)

– Hf (x; y) Hessian matrix of u, |Hu(x; y)| its spectral norm

-> use Hessian matrix to minimize the error estimate, by remeshing 
along principal directions of Hessian matrix, according to eigenvalue 
magnitude.

Tool: YAMS, developed within the GAMMA research project at 
INRIA-Rocquencourt. Anisotropic. Pascal Frey.
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o 15,000 elements.

o 15 km initial resolution. 

o 5km final resolution on icestreams.

o 3 min Yams remeshing.



In transformed error 

coordinates space (along 

Hessian directions), mesh 

triangles should tend to 

be equilateral (best 

capture of discretization 

error).

Mesh quality: measure of 

distortion from equilateral 

discretization error. Tends 

to 1 for equilateral 

triangles in error space.
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4 Ice flow model of Antarctica using ISSM.

• ISSM: Ice Sheet System Model, developed by JPL’s R&TD 
program, funded by JPL and NASA (Map09).

• Large scale model of Antarctica, using anisotropic remeshing:
– 150,000 2d elements: MacAyeal formulation.

– 1,200,000 3d elements (8 extrusion layers, distorted towards bedrock).

Pattyn formulation.

Icestreams resolved at 3km, interior of ice sheet captured at 50km.

• Diagnostic run, constrained using inverse control methods on drag:
– Background run (40 iterations) to correctly constrain entire ice sheet. 

– Refinement on all basins (20 basins) to capture icestreams.
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• Firn Layer:   van den Broeke, M.R., Towards quantifying the 
contribution of the Antarctic ice sheet to global sea level change. 
Journal of Physics. IV France, 2006 (139) 170-187

• Temperatures:   Giovinetto, M.B., N.M. Waters, and C.R. Bentley, 
Dependence of Antarctic surface mass balance on temperature, 
elevation and distance to open ocean, Journal of Geophysycal 
Research, 1990,  95, 3517-3531

• Surface: Bamber, Jonathan L., Jose Luis Gomez-Dans, and Jennifer 
A. Griggs. 2009. Antarctic 1 km Digital Elevation Model (DEM) from 
Combined ERS-1 Radar and ICESat Laser Satellite Altimetry. 
Boulder, Colorado USA: National Snow and Ice Data Center. Digital 
media.

• Thickness:   Lythe,M.B., D.G. Vaughan and Consortium BEDMAP, 
BEDMAP: A new ice thickness and subglacial topographic model of 
Antarctica, Journal of Geophysical Research, 2001, 106 (B6), 
11,335-11,352

• Grounding Line, Ice Front, Ice Rises:   Rignot unpublished.

• Surface velocity map: Rignot, unpublished. 
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Cf: Mathieu Morlighem poster, Tuesday session.
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Computation stats:

# elements: 1,200,000

# vertical layers: 8

# cpus: 100

# time to compute basal drag: 

10h. 40 control iterations (~800 

diagnostic runs)





Computation stats:

#elements: 1,200,000

#vertical layers: 8

#cpus: 100

#time to compute 

diagnostic: 5 min.
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5 Conclusions and perspectives.

• Higher order inverse control methods are computationally affordable, using 
adaptative remeshing. 

• InSAR data becoming available to constrain entire continent. 

• Spin ups can now combine paleo-runs with inverse control methods to 
constrain Antarctica ice flow. 

• ISSM capable of fully constraining present day diagnostics, with assumption 
of thermal steady-state.

• Embedded Full-Stokes inversion computationally possible in the next couple 
years.  

• Short term transients should be possible with full resolution models.

This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a

contract with the National Aeronautics and Space Administration's Cryosphere Science Program.
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